Выбери любимый жанр

Большая Советская Энциклопедия (АЭ) - Большая Советская Энциклопедия "БСЭ" - Страница 6


Изменить размер шрифта:

6

  Опыты в А. т. основываются на принципе обратимости движения, согласно которому перемещение тела относительно воздуха (или жидкости) можно заменить движением воздуха, набегающего на неподвижное тело. Для моделирования движения тела в покоящемся воздухе необходимо создать в А. т. равномерный поток, имеющий в любых точках равные и параллельные скорости (равномерное поле скоростей), одинаковые плотность и температуру. Обычно в А. т. исследуется обтекание модели проектируемого объекта или его частей и определяются действующие на неё силы. При этом необходимо соблюдать условия, которые обеспечивают возможность переносить результаты, полученные для модели в лабораторных условиях, на полноразмерный натурный объект (см. Моделирование, Подобия теория). При соблюдении этих условий аэродинамические коэффициенты для исследуемой модели и натурного объекта равны между собой, что позволяет, определив аэродинамический коэффициент в А. т., рассчитать силу, действующую на натуру (например, самолёт).

  Прототип А. т. был создан в 1897 К. Э. Циолковским, использовавшим для опытов поток воздуха на выходе из центробежного вентилятора. В 1902 Н. Е. Жуковский построил А. т., в которой осевым вентилятором создавался воздушный поток со скоростью до 9 м/сек. Первые А. т. разомкнутой схемы были созданы Т. Стантоном в Национальной физической лаборатории в Лондоне в 1903 и Н. Е. Жуковским в Москве в 1906, а первые замкнутые А. т. — в 1907—1909 в Гёттингене Л. Прандтлем и в 1910 Т. Стантоном. Первая А. т. со свободной струей в рабочей части была построена Ж. Эйфелем в Париже в 1909. Дальнейшее развитие А. т. шло преимущественно по пути увеличения их размеров и повышения скорости потока в рабочей части (где помещается модель), которая является одной из основных характеристик А. т.

  В связи с развитием артиллерии, реактивной авиации и ракетной техники появляются сверхзвуковые А. т., скорость потока в рабочей части которых превышает скорость распространения звука. В аэродинамике больших скоростей скорость потока или скорость полёта летательных аппаратов характеризуется числом М = v/a (т. е. отношением скорости потока v к скорости звука а). В соответствии с величиной этого числа А. т. делят на 2 основные группы: дозвуковые, при М < 1, и сверхзвуковые, при М > 1.

  Дозвуковые аэродинамические трубы. Дозвуковая А. т. постоянного действия (рис. 1) состоит из рабочей части 1, обычно имеющей вид цилиндра с поперечным сечением в форме круга или прямоугольника (иногда эллипса или многоугольника). Рабочая часть А. т. может быть закрытой или открытой (рис. 2, а и б), а если необходимо создать А. т. с открытой рабочей частью, статическое давление в которой не равно атмосферному, струю в рабочей части отделяют от атмосферы т. н. камерой Эйфеля (рис. 2) (высотной камерой). Исследуемая модель 2 (рис. 1) крепится державками к стенке рабочей части А. т. или к аэродинамическим весам 3. Перед рабочей частью расположено сопло 4, которое создаёт поток газа с заданными и постоянными по сечению скоростью, плотностью и температурой (6 — спрямляющая решётка, выравнивающая поле скоростей). Диффузор 5 уменьшает скорость и соответственно повышает давление струи, выходящей из рабочей части. Компрессор (вентилятор) 7, приводимый в действие силовой установкой 8, компенсирует потери энергии струи; направляющие лопатки 9 уменьшают потери энергии воздуха, предотвращая появление вихрей в поворотном колене; обратный канал 12 позволяет сохранить значительную часть кинетической энергии, имеющейся в струе за диффузором. Радиатор 10 обеспечивает постоянство температуры газа в рабочей части А. т. Если в каком-либо сечении канала А. т. статическое давление должно равняться атмосферному, в нём устанавливают клапан 11.

  Размеры дозвуковых А. т. колеблются от больших А. т. для испытаний натурных объектов (например, двухмоторных самолётов) до миниатюрных настольных установок.

  А. т., схема которой приведена на рис. 1, относится к типу т. н. замкнутых А. т. Существуют также разомкнутые А. т., в которых газ к соплу подводится из атмосферы или специальных ёмкостей. Существенной особенностью дозвуковых А. т. является возможность изменения скорости газа в рабочей части за счёт изменения перепада давления.

  Согласно теории подобия, для того чтобы аэродинамические коэффициенты у модели и натуры (самолёта, ракеты и т. п.) были равны, необходимо, кроме геометрического подобия, иметь одинаковые значения чисел М и Рейнольдса числа Re в А. т. и в полёте (Re = rvl/m, r — плотность среды, m — динамич. вязкость, l — характерный размер тела). Чтобы обеспечить эти условия, энергетическая установка, создающая поток газа в А. т., должна обладать достаточной мощностью (мощность энергетической установки пропорциональна числу М, квадрату числа Re и обратно пропорциональна статическому давлению в рабочей части pc.

  Сверхзвуковые аэродинамические трубы. В общих чертах схемы сверхзвуковой и дозвуковой А. т. аналогичны (рис. 1 и 3). Для получения сверхзвуковой скорости газа в рабочей части А. т. применяют т. н. сопло Лаваля, которое представляет собой сначала сужающийся, а затем расширяющийся канал. В сужающейся части скорость потока увеличивается и в наиболее узкой части сопла достигает скорости звука, в расширяющейся части сопла скорость становится сверхзвуковой и увеличивается до заданного значения, соответствующего числу М в рабочей части. Каждому числу М отвечает определённый контур сопла. Поэтому в сверхзвуковых А. т. для изменения числа М в рабочей части применяют сменные сопла или сопла с подвижным контуром, позволяющим менять форму сопла.

  В диффузоре сверхзвуковой А. т. скорость газа должна уменьшаться, а давление и плотность возрастать, поэтому его делают, как и сопло, в виде сходящегося — расходящегося канала. В сходящейся части сверхзвуковая скорость течения уменьшается, а в некотором сечении возникает скачок уплотнения (ударная волна), после которого скорость становится дозвуковой. Для дальнейшего замедления потока контур трубы делается расширяющимся, как у обычного дозвукового диффузора. Для уменьшения потерь диффузоры сверхзвуковых А. т. часто делают с регулируемым контуром, позволяющим изменять минимальное сечение диффузора в процессе запуска установки.

  В сверхзвуковой А. т. потери энергии в ударных волнах, возникающих в диффузоре, значительно больше потерь на трение и вихреобразование. Кроме того, значительно больше потери при обтекании самой модели, поэтому для компенсации этих потерь сверхзвуковые А. т. имеют многоступенчатые компрессоры и более мощные силовые установки, чем дозвуковые А. т.

  В сверхзвуковом сопле по мере увеличения скорости воздуха уменьшаются его температура Т и давление р, при этом относительная влажность воздуха, обычно содержащего водяные пары, возрастает, и при числе М » 1,2 происходит конденсация пара, сопровождающаяся образованием ударных волн — скачков конденсации, существенно нарушающих равномерность поля скоростей и давлений в рабочей части А. т. Для предотвращения скачков конденсации влага из воздуха, циркулирующего в А. т., удаляется в специальных осушителях 11.

  Одним из основных преимуществ сверхзвуковых А. т., осуществляемых по схеме рис. 3, является возможность проведения опытов значительной продолжительности. Однако для многих задач аэродинамики это преимущество не является решающим. К недостаткам таких А. т. относятся: необходимость иметь энергетические установки большой мощности, а также трудности, возникающие при числах М > 4 вследствие быстрого роста требуемой степени сжатия компрессора. Поэтому широкое распространение получили т. н. баллонные А. т., в которых для создания перепада давлений перед соплом помещают баллоны высокого давления, содержащие газ при давлении 100 Мн/м2(1000 кгс/см2), а за диффузором — вакуумные ёмкости (газгольдеры), откачанные до абсолютного давления 100—0,1 н/м2(10-3—10-6кгс/см2), или систему эжекторов (рис. 4).

6
Перейти на страницу:
Мир литературы